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Abstract: In this article, we provide a constructive procedure to generate a spanning tree for any graph from its
dominating set, γ - set. We introduce a new kind of minimum dominating set and hence generate a minimum
weighted spanning tree from a γ - set for G. We also provide a method for generating a minimum weighted
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1 Introduction
Minimum spanning trees (MSTs) have long been of
interest to mathematicians because of their many ap-
plications.

1. It has direct applications in the design of com-
puter and communication networks, power and
leased-line telephone networks, wiring connec-
tions, links in a transportation network, piping in
a flow network, etc.

2. It offers a method of solution to other problems
to which it applies less directly, such as network
reliability, clustering and classification problems.

3. It often occurs as a subproblem in the solution
of other problems. For example, minimum span-
ning tree (MST) algorithms are used in several
exact and approximation algorithms for the trav-
eling salesman problem, the multi-terminal flow
problem, the matching problem and the capaci-
tated MST problem. [1]

The problem originated in the 1920s when O.
Boruvka identified and solved the problem during the
electrification of Moravia. However, the language of
graph theory is not used to describe the algorithm in
his papers from 1926. Boruvka’s algorithm picks the
next edge by considering the cheapest edge leaving
each component of the current forest [7].

In the 1950s, many people contributed to the MST
problem. Among them were R. C. Prim and J. B.
Kruskal, whose algorithms are very widely used to-
day. Kruskal’s algorithm maintain an acyclic span-
ning subgraph H , enlarging it by edges with low
weight to form a spanning tree, by considering edges

in non decreasing order of weight, breaking ties arbi-
trarily [5].

Prims algorithm grows a spanning tree from a
given tree from a given vertex of a connected weighted
graph G, iteratively adding the cheapest edge from a
vertex already reached to a vertex not yet reached, fin-
ishing when all the vertices of G have been reached
[8]. In 1995, Karger et al., proposed the only known
linear expected-time algorithm for the restricted ran-
dom access computation model. That algorithm is a
randomized, recursive algorithm and requires the so-
lution of a related problem, that of verifying whether a
given spanning tree is minimum [3]. In 2012, Yajing
Wang et al., proposed variant formula of the Wiener
index edge-weighted trees of order n. The Wiener in-
dex of a graph is the sum of the distances between all
pairs of vertices. They have provide the minimum, the
second minimum, the third minimum, the maximum,
and the second maximum values of the Wiener index.
Also, they have characterized the corresponding ex-
tremal trees [11].

In this paper we provide two methods for generat-
ing a spanning tree and minimum weighted spanning
from a graph by using the minimum domination num-
ber. In first method, we provide a constructive proce-
dure to generate a spanning tree for any graph from
its γ - set. In second method, we provide a procedure
for generating a minimum weighted spanning tree by
using adjacency matrix.

2 Terminology
A spanning tree of G is a subgraph of G that is a tree
containing every vertex of G. An edge in a spanning
tree T is called a branch of T . An edge of G that is not
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in a given spanning tree T is called a chord. Adding
any chord to a spanning tree T will create exactly one
circuit. Such a circuit, formed by adding chord to a
spanning tree, is called a fundamental circuit. A span-
ning forest of a graph G is a forest that contains every
vertex of G such that two vertices are in the same tree
of the forest when there is a path in G between these
two vertices.

A graph G is said to be a weighted graph if
its edges are assigned some weight. A minimum
weighted spanning tree in a connected weighted graph
is a spanning tree that has the smallest possible sum
of weights of its edges. A graph G is maximal with
some property P provided that G has property P and
no proper supergraph of G has property P . An ad-
jacency matrix of a graph G with n vertices that are
assumed to be ordered from v1 to vn is defined by,

A = [aij ]n×n =


1, if there exist an edge

between vi to vj ;
0, otherwise.

Adjacency Matrix is also used to represent
weighted graphs. If [aij ] = w, then there is an edge
from vertex vi to vertex vj with weight w.For details
on graph theory parameter we refer to[2].

A set of vertices D in a graph G = (V,E) is a
dominating set if every vertex of V −D is adjacent to
some vertex of D. If D has the smallest possible car-
dinality of any dominating set of G, then D is called
a minimum dominating set - abbreviated MDS. The
cardinality of any MDS for G is called the domina-
tion number of G and it is denoted by γ(G). γ - set
denotes a dominating set for G with minimum cardi-
nality. A connected dominating set of a graph G is a
set D of vertices, if D induces a connected subgraph,
then it is called a connected dominating set(CDS).
The connected domination number of a graph G is the
minimum cardinality of a CDS, denoted by γc(G).[9]

The open neighborhood of vertex v ∈ V (G) is
denoted by

N(v) = {u ∈ V (G)|(uv) ∈ E(G)}

while its closed neighborhood is the set N [v] =
N(v) ∪ {v}. The private neighborhood of v ∈ D is
denoted by pn[v,D], is defined by

pn[v,D] = N(v)−N(D − {v}).

If a subgraph H satisfies the added property that for
every pair u, v of vertices, uv ∈ E(H) if and only if
uv ∈ E(G), then H is called an induced subgraph of
G and is denoted by < H >. We indicate that u is ad-
jacent to v by writing u⊥v.For details on domination
we refer to [9] and [10].

3 Spanning Tree From a γ - set
In this section, we provide a constructive procedure to
generate a spanning tree for any graph from its γ - set.
In all the figures encircled vertices denotes a γ - set
for G.

Theorem 1 Given any graph G with n vertices, there
is a spanning tree T of G such that γ(G) = γ(T ).

Proof: Let G be a graph with n vertices and let k be
the minimum value for which, D = {S1, S2, . . . , Sk}
is a γ - set for G such that

1. Each < Si >, i = 1, 2, . . . , k is maximal and
connected.

2. V < D >= V (S1) ∪ V (S2) . . . , V (Sk).

3. E < D >= E(S1) ∪ E(S2) . . . , E(Sk).

4. V (S1) ∩ V (S2) ∩ . . . ∩ V (Sk) = ϕ.

5. E(S1) ∩ E(S2) ∩ . . . ∩ E(Sk) = ϕ.

Case 1

If |D| = 1, then γ(G) = γc(G). Consider <
D >, where D is a connected dominating set for G.
If < D > is not a tree, remove suitable edges from
< D > to generate a new subgraph of G say D1 such
that V (D1) = V (D) and < D1 > is a tree.

If < D > is a tree, then consider < D > itself
and label < D > as < D1 >.

Let V (D1) = v1, v2, . . . , vm and let V (V −
D1) = {u1, u2, . . . , us}, where s +m = n. Since <
D1 > is connected, for all vi ∈ V (D1), pn[vi, D1] ̸=
ϕ. For all uj ∈ V − D1, either uj ∈ pn[vi, D1] or
uj /∈ pn[vi, D1] from some vi ∈ D1.

Choose an arbitrary vertex uj ∈ V − D1, j =
1, 2, . . . , s.

If uj ∈ pn[vi, D1], then construct a new graph D2

as follows.
• V (D2) = V (D1) ∪ {uj}.
•E(D2) = E(D1)∪{ujvi}, i = 1, 2, . . . ,m and

j = 1, 2, . . . , s.
If uj /∈ pn[vi, D1], for all i = 1, 2, . . . ,m, then uj
is k - dominated, say uj⊥v1, v2, . . . , vk. In this case,
construct D2 as follows

• V (D2) = V (D1) ∪ {uj}.
• E(D2) = E(D1) ∪ {ujvi}, where vi is one of

the vertices chosen arbitrarily from {v1, v2, . . . , vk}.
In both cases,

• |V (D2)| = |V (D1)|+ 1.
• |E(D2)| = |E(D1)|+ 1.
that is the number of vertices and edges is in-

creased by one. Proceeding this way, for all uj ∈
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V −D1, we generate a sequence of graphs D1, D2, . . .
such that

• Each < Di > is a tree, i = 1, 2, . . .
• |V (Dp+1)| = |V (Dp)|+ 1.
• |E(Dp+1)| = |E(Dp)|+ 1.
until we generate a spanning tree for G.

Case 2

If |D| ≥ 2 and say D has k - components
D = {S1, S2, . . . , Sk}. Verify if each < Si >, i =
1, 2, . . . , k is a tree. If not remove an edge from every
circuit of each < Si >, so that each < Si > is a tree.

Figure 1: The graph represents the spanning forest
that contain vertices in D only.

Let V (V −D) = {u1, u2, . . . , us}. For each uj ∈
V − D, proceed as in case 1 to generate a spanning
forest X1 = {T1, T2, . . . , TK}.

Figure 2: The tree partially constructed by adding
edges belonging to pn[v,D].

Let Ti = {ui1, ui2, . . . , uimi}, where mi = |Ti|.
Since G is a connected graph, for every Ti ∈ X1,
there is at least one Tj ∈ X1 such that uip⊥ujq,
for some p = 1, 2, . . . ,mi and q = 1, 2, . . . ,mj .

Figure 3: The tree partially constructed by adding
edges belonging to non private vertices.

Assume that Ti, Tj ∈ X1, such that uip⊥ujq for
some p = 1, 2, . . . ,mi and q = 1, 2, . . . ,mj .
Construct a new graph X2 as follows. X2 =
{T1, T2, . . . , Ti−1, Ti+1, . . . , Tj−1, Tj+1, . . . , Tk} ∪
{TiTj}, where

• |X2| = |X1| - 1;
• E(X2) = E(X1) ∪ (uipujq);
• V (X2) = V (X1).
X2 is also a spanning forest for the connected

graph G. We continue this procedure to generate a
sequence of trees X1, X2, . . . such that

• Each Xi is a spanning forest for G.
• |Xi+1| = |Xi| − 1;
• |V (Xi+1)| = |V (Xi)|;
• |E(Xi+1)| = |E(Xi)|+ 1.
until we generate a spanning tree for G.
From case 1 and case 2, we conclude that we can

generate a spanning tree T of G. D is a dominating
set for T also. Moreover γ(T ) ≥ γ(G), that is D is a
γ- set for T also. Hence γ(G) = γ(T ). ⊓⊔

4 Graph Domination
In this section, we introduce a new kind of mini-
mum dominating set, provide a necessary and suffi-
cient condition for the existence of the set.

Sampathkumar and Kamath[4] define a set D ⊆
V ∪ E as a mixed domination set ( md - set ) if every
element not in D is m - dominated by an element of
D. The mixed domination number γm(G) is the min-
imum cardinality of an md - set. A set S ⊆ V is a ve
dominating set ( ved - set ) if every edge of G is m

WSEAS TRANSACTIONS on MATHEMATICS M. Yamuna, K. Karthika

E-ISSN: 2224-2880 1057 Issue 11, Volume 12, November 2013



Figure 4: Spanning tree generated from D.

dominated by vertex in S. A ved - set with minimum
cardinality is called a γve - set.

We introduce a new kind of dominating set called
graph domination. A γ- set D ⊆ V is said to graph
domination set if D covers all the vertices and edges
of G. A γ - set D of G that satisfies this property is
denoted by γG(G).

Figure 5: G is Graph domination graph. The γ - set
{u1, u2, u3, u4} covers all the edges and vertices of G

Theorem 2 A γ - set D is a graph domination set if
and only if V −D is independent.

Proof: Let G be any graph and D be a γG(G) - set
for G. Let V −D = {u1, u2, . . . , um}. If V −D is not
independent there are some ui, uj ∈ V −D such that
ui⊥uj , that is there is an edge e = (uiuj) such that e
is not covered by D, a contradiction to the assumption
that D is graph domination set.
Conversely assume that V − D is independent. Any
edge e ∈ E(G) has one end vertex in D and other

in V − D or both end vertices of e are in D, which
implies all the edges in G are covered by D, that is D
is a γG(G) - set. ⊓⊔

Observation 1
Let v ∈ V −D. Then N(v) ∈ D.

Proof: Let v ∈ V − D. If there is one w ∈ N(v)
such that w /∈ D, then e = (v, w) ∈ E(G) such that
w, v ∈ V −D,w⊥v, a contradiction by theorem [ 2 ].
⊓⊔

Observation 2
v = pn[u,D] if and only if v is pendant.

5 Minimum Weighted Spanning
Tree From a γ - set

In the following theorem we provide a method for
generating a spanning tree for a weighted graph with
n vertices by using a γ - set D, where D is graph
domination set.

Theorem 3 Let G be a weighted connected graph
with n vertices and D be a γ - set for G that cov-
ers all the edges of G. Then there is a spanning tree
T for G such that

1. γ(G) = γ(T ).

2. T is minimum weighted.

Proof: Let G be a weighted graph with n vertices and
D be a γ - set that covers all the edges of G. By the
definition of D,

1. u, v ∈ V (G), u⊥v, at least one of u or v is in-
cluded in D.

2. V −D is an independent set.

Let D = {u1, u2, . . . , up} and V − D =
{v1, v2, . . . , vq} such that p + q = n. We observe
that, if vj = pn[ui, D], where i = 1, 2, . . . , p and
j = 1, 2, . . . , q for some ui ∈ D, then vj is a pendant
vertex. Choose an arbitrary vertex vj ∈ V − D. Let
eij = (uivj). Consider the vertices in the dominating
set D.

We proceed to construct a spanning tree T1 from
D as follows

1. vj = pn[ui, D].

• V (T1) = V (T1) ∪ vj .

• E(T1) = eij .
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2. vj is k - dominated, k ≥ 2, then vj is adjacent to
k vertices in D say u1, u2, . . . , uk.
Label the corresponding k - edges as
ej1, ej2, . . . , ejk. In this case, V (T1) =
V (D) ∪ {vj} and E(T1) = ejr, where ejr is the
edge with minimum weight, r = 1, 2, . . . , k. If
there exist more than one edge with the same
minimum weight, then we can arbitrarily choose
any edge.

Figure 6: The graph represents the spanning forest
that contain vertices in D only.

Figure 7: The tree partially constructed by adding
minimum weighted edges belonging to pn[v,D].

Continue this procedure for all vertex in V − D
to generate a sequence of trees T1, T2, . . . , Tz . Let
S1 = T1∪T2∪. . .∪Tz . S1 = (D,V −D) is a bipartite
graph such that deg(ui) ≥ 1, for all i = 1, 2, . . . , p
and deg(vj) = 1, for all j = 1, 2, . . . , q.

1. If S1 is connected, then S1 is a spanning tree for
G.

2. If S1 is disconnected, as observed in the proof
of the theorem, S1 is a bipartite graph such
that deg(ui) ≥ 1, for all i = 1, 2, . . . , p and
deg(vj) = 1, for all j = 1, 2, . . . , q, that is S1 is

Figure 8: The tree partially constructed by adding
minimum weighted edges belonging to non private
vertices.

a spanning forest. When we add an edge between
any two trees Ti and Tj , we do not create any cir-
cuit. Since G is connected, there exist at least
one Ti, Tj ∈ S1, i ̸= j such that there is an edge
between Ti and Tj . For any Ti, Tj ∈ S1, i ̸=
j, i, j = 1, 2, . . . , z, label the edge between Ti

and Tj as eij . Let E = {eij | Ti⊥Tj , i ̸= j,
where i, j = 1, 2, . . . , z}. Arbitrarily choose
an edge exy ∈ E such that exy is of minimum
weight. Construct a new tree S2 as follows,
S2 = {T1, T2, . . . , Tx−1, Tx+1, . . . , Ty−1, Ty+1,
. . . , Tz}∪{Txy}, where Txy = Tx∪Ty∪exy, that
is V (S2) = V (S1) and E(S2) = E(S2) ∪ exy.
Continue this process to generate a sequence
S1, S2, . . . such that

(a) |Si+1| < |Si|.
(b) |V (Si+1)| = |V (Si)| = V (G).
(c) |E(Si+1)| = |E(Si)|+ 1.

until we generate a spanning tree T for G.

D is a dominating set for T also. Moreover
γ(T ) ≥ γ(G), that is D is a γ- set for T also. It re-
mains to show that T is a spanning tree with minimum
weight. We modify the proof technic for proving that
T has minimum weight [6].

When we construct the spanning tree T , we in-
clude edges one by one. Let the edges be labeled as
e1, e2, . . . , en−1. Let S be a minimum weighted span-
ning tree of G chosen to have as many edges in com-
mon with T as possible. We shall prove that S = T
by the method of contradiction. Suppose that S ̸= T ,
then T has at least one edge which is not in S. Let ek
be the first edge chosen by the theorem which is in T
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Figure 9: Minimum weighted spanning tree generated
from D.

but not in S, that is the edges e1, e2, . . . , ek−1 are in S
and ek is the kth - edge such that ek is not in S.

Case 1 ek ∈ S1

ek ∈ S1, which implies e1, e2, . . . , ek−1 are edges
whose one end vertex is in D and the other in V −
D.ek is also an edge to be included such that one end
vertex is in D and the other in V −D, say ek = (uv),
where u ∈ D, v ∈ V −D.

Let Ti denote the sub tree created after the addi-
tion of the ith edge ei, 1 ≤ i ≤ n − 1. By the the-
orem one end of ek is in Tk−1 and the other is not,
that is u ∈ Tk−1 and v /∈ Tk−1. Since u and v are
in the tree S there is a unique path P in S connect-
ing u and v and P does not involve ek. Also since
P is path from u to v there is an edge e∗ such that
e∗ = (u∗v). Since G is graph domination graph and
v ∈ V − D,N(v) ∈ D, that is there is an edge e∗

such that e∗ = (u∗v), u∗ ∈ D, where u∗ ∈ D and
w(e∗) ≥ w(ek), since otherwise, e∗ has less weight
than ek and the theorem would have incorporated e∗

and not ek as the kth edge. Now the path P in S to-
gether with ek gives a cycle in G. So, if we replace
the edge e∗ in S with the edge ek, we still have a con-
nected subgraph with n vertices and n − 1 edges. In
other words, replacing e∗ in S with ek, gives a new
spanning tree R. Since w(e∗) ≥ w(ek), the weight
of R is not greater than that of S and so R must a
be minimum weighted spanning tree. However R has
one more edge in common with T than S has namely
the edge ek, a contradiction to the assumption that S
was chosen to be a minimum weighted spanning tree
with as many edges in common with T as possible.

Case 2 ek /∈ S1.
Let ek ∈ Sq, 2 ≤ q ≤ z. In this case the bipartite

graph S1 is already created, S1 is a forest and ek is the
first edge chosen by the theorem which is in T but not

in S, that is the bipartite graph S1 is common to S and
T .

ek ∈ Sq means that, e1, e2, . . . , ek−1 are edges
in the partially constructed tree T and ek is the first
edge which does not belong to S. Since ek /∈ S1,
let Tr = {T1 ∪ T2 ∪ . . . ∪ Tk−1} ∪ {k − 2 edges
added between the trees T1, T2, . . . , Tk−1}. Let Ts =
Tr ∪Tk+1 ∪ . . .∪Tz . Ts is a forest such that V (Ts) =
V (T ) and E(Ts) = E(Tr)∪E(Tk+1)∪ . . .∪E(Tz).
ek = (uv) is an edge with smallest weight such that
u ∈ Ti, v ∈ Tj , i ̸= j, i, j = r, k + 1, . . . , z.

Since ek /∈ S, adding ek to S creates a fundamen-
tal circuit Γ in S. Not all the edges of Γ belong to
Ts [ else addition of ek will not create a fundamen-
tal circuit ]. Let P be the path from u to v in Γ, not
including ek. P is not completely contained in any
Ti, i = r, k + 1, . . . , z. Therefore, there exist at least
one edge e∗ belonging to Γ such that e∗ ̸= ek and
w(e∗) ≥ w(ek), since otherwise R = S −{e} ∪ {ek}
is a spanning tree for G with weight less than S, a con-
tradiction. R is a connected subgraph with n vertices
and n− 1 edges. Since w(e∗) ≥ w(ek), the weight of
R is not greater than that of S and so R must be min-
imum weighted spanning tree. However R has one
more edge in common with T than S has namely the
edge ek. This contradicts the assumption that S was
chosen to be a minimum weighted spanning tree with
as many edges in common with T as possible.

This contradiction as arisen from the assumption
that S ̸= T . Hence S = T .

Hence T is a spanning tree for G such that
γ(T ) = γ(G) and T is minimum weighted. ⊓⊔

Example 4 We have the following graphs

Figure 10: Weighted Graph
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Figure 11: The graph represents the spanning forest
that contain vertices in D = {u1, u2, u3, u4, u5} only.

Figure 12: The tree partially constructed by
adding minimum weighted edges belonging
to pn[u2, D],pn[u3, D] and pn[u5, D], where
pn[u2, D] = {v11}, pn[u5, D] = {v12},
pn[u3, D] = {v1, v9}.

Figure 13: The tree partially constructed by adding
minimum weighted edges belonging to non private
vertices.

Figure 14: Minimum weighted spanning tree gener-
ated from D.The weight of this spanning tree is equal
to 229.

6 Adjacency Matrix Using γ - set
Let G be a weighted connected and graph domination
graph with n vertices. Let D = {u1, u2, . . . , uk}, and
V −D = {v1, v2, . . . , vm}, k+m = n. Let X be the
adjacency matrix of G. For comfort of discussion, let
us arrange the rows and columns of X as follows.

1. The first k - rows and columns of X corresponds
to the vertices in D.

2. The remaining n − k rows and columns corre-
sponds to the vertices of V −D.

3. Define X as follows,

X = [xij ]n×n =

{
aij , if vi⊥vj ;
0, otherwise.

where aij represents the edge value from vi to vj

X =

(
X11 X12

X21 X22

)

where X11 represents adjacency between vertices in
D, X12 and X21 between vertices in D and V − D
and X22 between vertices in V −D. In a graph dom-
ination graph, since V − D is independent, X22 is a
null matrix.

The first k - rows of X represents the vertices
dominated by the corresponding vertex, that is every
non - zero entry in the first k - rows represents the
number of vertices dominated by each vertex in D.
So, the number of non - zero entries in each column of
X12 represents the number of vertices dominating the
corresponding vertex. In other words, a column with
exactly one non - zero entry specifies that the corre-
sponding vertex is a private neighborhood, that is it is
a pendant vertex.
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The following matrix represent the adjacency ma-
trix of G as given in Fig. 10.

X = [xij ]n×n =

0 0 0 0 0 66 25 1 21 0 0 0 0 0 0 0 0
0 0 3 0 13 7 39 17 4 0 0 0 0 0 0 55 0
0 3 0 0 8 26 0 0 0 0 0 0 0 33 26 0 0
0 0 0 0 0 0 0 0 0 6 7 16 5 0 0 0 0
0 13 8 0 0 0 0 0 0 19 2 2 11 0 0 0 28
66 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
25 39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
21 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 6 19 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 7 2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 16 2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 5 11 0 0 0 0 0 0 0 0 0 0 0 0
0 0 33 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 26 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 28 0 0 0 0 0 0 0 0 0 0 0 0


Step. 1

Chose the smallest entry in each column of X12.
Executing step 1 generates a spanning forest, that

is stage 1 and 2 of theorem [3], is executed.
Let A = [X12], that is A is a sub matrix of X of

order k×n−k. vi along with vertices ( corresponding
to the non - zero entries ) picked by step - 1 forms the
spanning forest generated at step - 2, of theorem[3].

A =


66 25 1 21 0 0 0 0 0 0 0 0
7 39 17 4 0 0 0 0 0 0 55 0
26 0 0 0 0 0 0 0 33 26 0 0
0 0 0 0 6 7 16 5 0 0 0 0
0 0 0 0 19 2 2 11 0 0 0 28


In the above matrix the bold vertices are ones

picked by step 1. After executing this matrix we can
get the spanning forest as given in Fig. 13.

Any row of A, with zero entry by step - 1 in-
dicates that the corresponding vertex is an isolated
vertex in the partially constructed spanning forest
{T1, T2, . . . , Tz}, z ≤ k. Let

V (T1) = {x11, x12, . . . , x1p1},
V (T2) = {x21, x22, . . . , x2p2},
· · · · · ·
V (Tz) = {xz1, xz2, . . . , xzpz}.

Every set of V (Ti) contains at least one ele-
ment in D, which implies |V (Ti)| ≥ 1, for all i =
1, 2, · · · , z. Let Z = {V (T1), V (T2), . . . , V (Tz)}.

Arbitrarily choose any V (Ti) from Z. We mean
to say that, we start from the component V (Ti) which
contains the vertices xi1, xi2, . . . , xipi. We need to
pick the next edge by considering the edge with min-
imum weight leaving this current component V (Ti),

that is we need to pick an edge with smallest weight
adjacent to any of the vertices in X − V (Ti). Since
we are looking for an edge from V (Ti) to X −V (Ti).
Consider the submatrix X1 = [xij ]n×n−pi = {X−
the columns corresponding to the vertices in V (Ti)}.
Connecting Ti to an another component Tj by choos-
ing an edge with minimum weight can be enabled by
choosing a smallest entry corresponding to the rows
xi1, xi2, . . . , xipi ( excluding the entries picked corre-
sponding to step 1).

X1 =



0 0 0 0 66 21 0 0 0 0 0 0 0 0
0 3 0 13 7 4 0 0 0 0 0 0 55 0
3 0 0 8 26 0 0 0 0 0 33 26 0 0
0 0 0 0 0 0 6 7 16 5 0 0 0 0
13 8 0 0 0 0 19 2 2 11 0 0 0 28
7 0 0 0 0 0 0 0 0 0 0 0 0 0
39 0 0 0 0 0 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 6 19 0 0 0 0 0 0 0 0 0 0
0 0 7 2 0 0 0 0 0 0 0 0 0 0
0 0 16 2 0 0 0 0 0 0 0 0 0 0
0 0 5 11 0 0 0 0 0 0 0 0 0 0
0 33 0 0 0 0 0 0 0 0 0 0 0 0
0 26 0 0 0 0 0 0 0 0 0 0 0 0
55 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 28 0 0 0 0 0 0 0 0 0 0


In the above matrix, we start from the bold rows {

u1, v2, v3 }and select the smallest entry in these rows.
The smallest entry is represent by bold and italic, that
is 17.

Step.2

Start from the vertex set V (Ti), that is
xi1, xi2, . . . , xipi. Connect this component to another
component in Z ( say V (Tj) ) by choosing a smallest
entry in the rows xi1, xi2, . . . , xipi ( excluding the en-
tries picked in step 1 ) in matrix X1 that is we choose
an edge ( eij ) with minimum value that connect two
components of the partially constructed spanning tree
by step 1.

By applying step 2, we can get the following ma-
trix.

X2 =



0 0 0 0 0 0 0 0 0 0
3 0 13 0 0 0 0 0 0 0
0 0 8 0 0 0 0 33 26 0
0 0 0 6 7 16 5 0 0 0
8 0 0 0 19 2 2 11 0 28
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 6 19 0 0 0 0 0 0 0
0 7 2 0 0 0 0 0 0 0
0 16 2 0 0 0 0 0 0 0
0 5 11 0 0 0 0 0 0 0
33 0 0 0 0 0 0 0 0 0
26 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 28 0 0 0 0 0 0 0
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In the above matrix, the bold rows repre-
sents two forest combined, that is {u1, v2, v3} and
{u2, v1, v4, v11}. The smallest entry is represented by
bold and italic, that is 3.

Once step 2 is executed the num-
ber of components of the spanning for-
est is reduced by one. Let Z1 =
{V (T1), V (T2), . . . , V (Ti−1), V (Ti+1), V (Tj−1),
V (Tj+1), . . . , V (Tz)} ∪ {V (TiTj)}, where
V (TiTj) = V (Ti) ∪ V (Tj) ∪ {eij}, that is Z1

is the newly constructed spanning forest after
executing step 2 once.

Step.3

Choose an arbitrary vertex set from Z1 and con-
tinue as in step - 2 to generate Z2 and the correspond-
ing matrix X2.

X3 =



0 0 0 0 0 0 0
0 13 0 0 0 0 0
0 8 0 0 0 0 0
0 0 6 7 16 5 0
0 0 19 2 2 11 28
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
6 19 0 0 0 0 0
7 2 0 0 0 0 0
16 2 0 0 0 0 0
5 11 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 28 0 0 0 0 0


In the above matrix, the bold rows represents two

forest combined, that is {u1, u2, v1, v2, v3, v4, v11}
and {u3, v9, v10}. The smallest entry is represented
by bold and italic, that is 8.

Step.4

Continue the process to generate Z1, Z2, . . . and
a sequence of matrices X1, X2, . . . until all n vertices
have been connected by n− 1 edges.

X4 =



0 0 0
0 0 0
0 0 0
0 6 5
0 19 11
0 0 0
0 0 0
0 0 0
0 0 0
6 0 0
7 0 0
16 0 0
5 0 0
0 0 0
0 0 0
0 0 0
0 0 0



In the above matrix, the bold rows rep-
resents two forest combined, that is
{u1, u2, u3, v1, v2, v3, v4, v9, v10, v11} and
{u5, v6, v7, v12}. The smallest entry is represented by
bold and italic, that is 7.

After executing this matrix we can get a minimum
weighted spanning tree T .



0 0 0 0 0 66 25 1 21 0 0 0 0 0 0 0 0
0 0 3 0 13 7 39 17 4 0 0 0 0 0 0 55 0
0 3 0 0 8 26 0 0 0 0 0 0 0 33 26 0 0
0 0 0 0 0 0 0 0 0 6 7 16 5 0 0 0 0
0 13 8 0 0 0 0 0 0 19 2 2 11 0 0 0 28
66 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
25 39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
21 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 6 19 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 7 2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 16 2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 5 11 0 0 0 0 0 0 0 0 0 0 0 0
0 0 33 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 26 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 28 0 0 0 0 0 0 0 0 0 0 0 0


In the above matrix, the smallest entries are rep-

resented by bold and italic, that is 7, 25, 1, 4, 6, 2, 2,
5, 33, 26, 55, 28, 17, 3, 8 and 7. The weight of this
spanning tree is equal to 229. This weight is equal to
the weight of spanning tree as given in Fig. 14.

7 Conclusion
This paper provides a new method of generating a
minimum weighted spanning tree from a γ - set. For
each distinct γ - set we can generate a minimum
weighted spanning tree. So the maximum possible
distinct spanning trees that can be generated is equal
to the number of distinct γ - set possible for any graph
domination graph. This method can be adopted to find
minimum weighted spanning trees for graph domina-
tion graph and to generate graph domination trees.
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